Wolfram’s online code lab powers this article. Please click to see the demonstration on Lebsgue approximation of the given function.
In[]:=
f[x_]:=1–
2
(x–1)
In[]:=
[nn_,kk_]:=Moduleint=Reduce<=f[x]<=&&0<=x<=2,x/.{n–>nn,k–>kk}/.{Or–>List}/.{Inequality–>List},If[int===False,Nothing,If[Length[int]==2,If[Head[int]===Equal,{int[[–1]],int[[–1]]},int[[;;,{–1,1}]]],int[[{1,–1}]]]]
k–1
n
2
k
n
2
In[]:=
[nn_]:=Module[{int=Reduce[f[x]>=n&&x<=2,x]/.{n–>nn}/.{Or–>List}/.{Inequality–>List}},If[int===False,Nothing,If[Length[int]==2,If[Head[int]===Equal,{int[[–1]],int[[–1]]},int[[;;,{–1,1}]]],int[[{1,–1}]]]]]
In[]:=
χ[n_,k_,x_]:=Module[{int=[n,k]},If[int===Nothing,0,If[Between[x,int],1,0]]]
In[]:=
χ[n_,x_]:=Module[{int=[n]},If[int===Nothing,0,If[Between[x,int],1,0]]]
In[]:=
ϕ[n_,x_]:=Sumχ[n,k,x]+nχ[n,x],{k,1,n*}
k–1
n
2
n
2
In[]:=
ManipulateShowPlot[{1–,ϕ[n,x]},{x,0,2},Evaluated–>True,PlotPoints–>100,PlotTheme–>"Detailed"],NumberLinePlotInterval/@[n,#]&/@Range[n],Spacings–>Join{0},Table,,{n,1,5,1}
2
(x–1)
n
2
1
n
2
n
2
In[]:=
ListAnimateTableShowPlot[{1–,ϕ[n,x]},{x,0,2},Evaluated–>True,PlotPoints–>100,PlotTheme–>"Detailed"],NumberLinePlotInterval/@[n,#]&/@Range[n],Spacings–>Join{0},Table,,{n,1,5,1}
2
(x–1)
n
2
1
n
2
n
2
Out[]=
|
浏览量: 15